什么是后生元? 它们与益生元和益生菌有何关系?
你可能从未听说过后生元,但在肠道健康和微生物组科学中,后生元是非常热门的课题。益生元和益生菌可能较为人熟悉,但是这三者有著相互依存的关系,对我们的消化系统健康以至心理健康(有赖于肠脑轴线)都至关重要。 除了心理健康外,肠道微生物组还会极大地影响你的免疫、消化、代谢和心脏健康。
让我们一起探讨后生元和它们的健康益处。
什么是后生元?
后生元是益生菌进食益生元后所衍生的副产品。 没错! 当你进食谷类食物或新鲜水果,这些食物中的纤维便是益生元。 当益生菌把纤维分解,将其转化为代谢产物,便是我们所称的后生元。
通过益生元的发酵,益生菌产生各种被称为后生元的化合物。 短链脂肪酸(SCFA)、功能蛋白和胞外多糖(EPS)是可以描述为后生元的其中三个例子。
研究显示,后生元这种功能性生物活性化合物,对你的免疫系统具有直接益处。 研究亦显示,健康人士可以藉著后生元,优化整体健康状况。 后生元也有助缓解异位性皮肤炎、腹泻和婴儿肠绞痛等症状。
纤维缺乏症和益生菌
健康的后生元菌群由纤维开始。 纤维的进食量,对健康的肠道微生物组固然重要,但我们也需要不同种类的纤维,以产生良好健康所需的后生元代谢物。
多吃各式各样的植物性食物,可以摄取更大量和多元化的纤维,从而强化你的益生元健康。这会对你的后生元状态产生直接影响。 水果、蔬菜、谷物和豆类食品,都是纤维的良好来源。
每天应该吃大约25克纤维,但不要超过50克。 进食过多纤维会引起诸如腹胀、食欲下降、抽筋和排便困难等症状,并可能有损磷和钙的吸收。
健康肠道细菌—良好健康的基础
从强大的免疫系统到良好的心理健康,健康的肠道微生物组与人体健康具有密切关系。 微生物组是指在特定环境中生存的微生物。 尽管在你身体内和皮肤上,有数以万亿计的微生物(microbes),包括真菌、细菌和病毒;但仅在你的肠道内,就有大约100万亿的微生物。
这些微生物大多存在于大肠中一个名为盲肠的部位。 在人体内,单是细菌细胞便有大约40万亿个,这实在令人惊叹,尤其是当你意识到自己体内的人体细胞只有30万亿个时。 单单这个事实,便彰显了肠道菌群的重要性。
这些细菌当中,有部分被证明是有益的,我们称之为好细菌或友好细菌;另一些细菌则有害,并可能导致生病。
当我们沿著母亲的产道出生时,便初次接触到微生物组。 随著我们不断成长,微生物数量变得越来越多,种类亦更繁多。
双歧杆菌是一种友好的微生物,它很早便开始在新生婴儿的肠道中生长,以帮助消化母乳中的糖分。 这种细菌在整个生命中都很重要,因为它会产生SCFA—维持健康所必需的后生元。
随著年龄增长,更多细菌会留在你的肠道中,带来消化、免疫、心脏、新陈代谢和精神健康方面的益处。
健康微生物组的5大健康益处
强大的肠道菌群被证明对整体健康至关重要。
消化健康
通过消化纤维,好细菌或益生菌成为建构良好后生元健康的基石。 这些消化纤维的细菌,所产生的SCFA有助于代谢脂肪和碳水化合物。 它们是结肠内壁细胞的主要能量来源。
体重增加可能是由肠道微生态失调所引至,亦即肠道中的好细菌和坏细菌出现失衡。 肠道微生态失调也可能引起疾病,例如炎性反应性肠病(IBD)和肠易激综合症(IBS)。 肠道微生态失调的相关症状包括身体不适、腹胀和抽筋等。
同时摄取双歧杆菌和乳酸杆菌两种益生菌,可以帮助避免IBS和IBD所引起的不适。
免疫健康
肠道菌群对免疫健康至关重要。 它有助调节体内的免疫稳态(或平衡)。 肠道微生物群落的变化,可能导致免疫系统失调,不仅引致肠道自体免疫性疾病,还可能引致影响全身系统的自体免疫性疾病。
由于肠道微生物组与免疫系统之间存在重要的联系,研究人员目前正研究新的微生物疗法,作为自体免疫性疾病和其他疾病的潜在修复方法。
心脏健康
健康肠道有助促进心脏健康。 一项研究发现,肠道菌群可促进良好的胆固醇—高密度脂蛋白(HDL)和甘油三酯。 作为一种益生菌,服用乳酸杆菌也可能有助于减少胆固醇水平。 总胆固醇水平下降,加上好胆固醇水平上升,对心脏和血管健康十分重要。
高胆固醇和高密度脂蛋白水平降低,会引致动脉壁形成斑块,可能导致心藏病发作和中风。红曲米是一种天然补充品,有助减少胆固醇水平。
氧化三甲胺 (TMAO) 会随著肠道中不友好细菌代谢胆碱和左旋肉碱而产生。 TMAO是可能导致动脉阻塞的化合物。 动物制食品含有胆碱和左旋肉碱,尤其是红肉。
减少食用动物产品并保持健康的微生物组,可以帮助减低肠道细菌产生TMAO的机率。
代谢健康
糖代谢病和血糖水平也会受到肠道菌群影响。 研究发现,即使参与者进食相同的餐膳,他们进餐后的血糖水平也有很大差异。 研究人员指出,肠道微生物组的不同,可能是造成这种差异的原因。
而另一项研究发现,肠道微生物组的多样性,会在1型糖代谢病发作之前大大降低。 他们并发现,在1型糖代谢病发作之前,各类型的不健康细菌水平都会升高。
精神健康
近年来,肠脑轴线已经成为许多研究的主题。 其中一个备受讨论的议题,是发现肠道细菌对大脑神经递质的产生起著关键作用。
神经递是大脑中的化学物质,可以控制或促进体内各种生理作用。 神经递质血清素主要在肠道中合成。 血清素在体内具有多种功能,包括调节情绪和促进幸福安康感。 它还有助于睡眠和消化功能。
如何优化你的后生元微生物组
益生元
要拥有健康的微生物组,你首先必须拥有良好的益生元。
富含益生元的食物包括菊粉等纤维,以及诸如低聚果糖(FOS)等其他化合物。 FOS不仅支持健康的肠道菌群,而且还有助于减少胆固醇,并支持健康的免疫系统。
有证据显示,FOS和菊粉可刺激肠道中双歧杆菌的生长。 双歧杆菌促进肠道的控制作用,有助于抵抗急性感染。
另一种促进双歧杆菌生长的强大益生元是麦麸,即全麦谷物的麸皮。 麦麸提供大量的阿拉伯低聚木糖(AXOS)。 除了支持友好细菌的生长,AXOS还具有抗氧的益处。
菊粉是一种纤维,它天然存在于洋葱、大蒜、菊芋、蒲公英嫩叶、芦笋和菊苣根之中。 如果你的饮食中没有摄取足够富含菊粉的食物,你可以选择补充菊粉。
果胶和β-葡聚糖
果胶和β-葡聚糖都是有助于肠胃好帮手的益生元。 苹果、梨、番石榴、布冧和柑橘类水果等有机食品均富含果胶纤维。
要提升β-葡聚糖水平,可以多吃燕麦、大麦、海藻,以及灵芝、舞茸和香菇等不同品种的蘑菇。
补充果胶和β-葡聚糖也有助支持益生元。
葡甘露聚糖
多吃蒟蒻,它含有丰富的葡甘露聚糖纤维,可以支持健康和多样化的后生元。 葡甘露聚糖支持肠道中好细菌的生长,同时有助减少胆固醇、支持体重减轻、优化免疫功能和减少排便困难。
要加强支持力度,可以服用葡甘露聚糖补充品。
发酵食品
食用克菲尔、乳酪、康普茶和酸菜等发酵食品,可以提高益生菌水平,优化你的生后元状态。 发酵食品主要提高乳酸杆菌水平。 它们还可能减少肠道中有害细菌的水平。
避免阿斯巴甜等人造甜味剂,也可以支持你的生后元健康。 人造甜味剂会刺激肠道微生物群中不友好细菌(包括肠杆菌科)的生长。
特后,如果可以的话,应避免服用细菌控制剂。 细菌控制剂会破坏肠道中的好细菌和坏细菌。 仅在有医级需要时才服用它们。
总结
后生元是良好整体健康的基础。 大脑、心脏、免疫细胞和肠道细胞,皆有赖后生元才能发挥上佳水平。
保持良好后生元状态的上佳方法,是食用更多的益生元,并增加益生菌的菌群。 只有具备良好的益生元和益生菌状态,才能充分体验健康后生元微生物组的益处。
参考文献:
- Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C. Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int J Mol Sci. 2019;20(19):4673. Published 2019 Sep 20. doi:10.3390/ijms20194673
- Kumar VP, Prashanth KV, Venkatesh YP. Structural analyses and immunomodulatory properties of fructo-oligosaccharides from onion (Allium cepa). Carbohydr Polym. 2015;117:115-122. doi:10.1016/j.carbpol.2014.09.039
- Costa GT, Abreu GC, Guimarães AB, Vasconcelos PR, Guimarães SB. Fructo-oligosaccharide effects on serum cholesterol levels. An overview. Acta Cir Bras. 2015;30(5):366-370. doi:10.1590/S0102-865020150050000009
- Kolida S, Tuohy K, Gibson GR. Prebiotic effects of inulin and oligofructose. Br J Nutr. 2002;87 Suppl 2:S193-S197. doi:10.1079/BJNBJN/2002537
- Chen HL, Cheng HC, Liu YJ, Liu SY, Wu WT. Konjac acts as a natural laxative by increasing stool bulk and improving colonic ecology in healthy adults. Nutrition. 2006;22(11-12):1112-1119. doi:10.1016/j.nut.2006.08.009
- Tester RF, Al-Ghazzewi FH. Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan. J Sci Food Agric. 2016;96(10):3283-3291. doi:10.1002/jsfa.7571
- François IE, Lescroart O, Veraverbeke WS, et al. Effects of wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal parameters in healthy preadolescent children. J Pediatr Gastroenterol Nutr. 2014;58(5):647-653. doi:10.1097/MPG.0000000000000285
- Clemens R. et al. Filling America’s Fiber Intake Gap: Summary of a Roundtable to Probe Realistic Solutions with a Focus on Grain-Based Foods. J Nutr. 2012 July; 142(7): 1390S-1401S.
- Berdy J. Bioactive Microbial Metabolites. J. Antibiot. 2005;58(1):1.26.
- Shah M, Chandalia M, Adams-Huet B, et al. Effect of a high-fiber diet compared with a moderate-fiber diet on calcium and other mineral balances in subjects with type 2 diabetes. Diabetes Care. 2009;32(6):990-995. doi:10.2337/dc09-0126
- Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14(8):e1002533. Published 2016 Aug 19. doi:10.1371/journal.pbio.1002533
- Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe. 2014;16(3):276-289. doi:10.1016/j.chom.2014.08.014
- Arboleya S, Watkins C, Stanton C, Ross RP. Gut Bifidobacteria Populations in Human Health and Aging. Front Microbiol. 2016;7:1204. Published 2016 Aug 19. doi:10.3389/fmicb.2016.01204
- Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol. 2016;7:185. Published 2016 Feb 17. doi:10.3389/fmicb.2016.00185
- Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214. doi:10.1126/science.1241214
- Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3(1):4-14. doi:10.4161/gmic.19320
- Fu J, Bonder MJ, Cenit MC, et al. The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids. Circ Res. 2015;117(9):817-824. doi:10.1161/CIRCRESAHA.115.306807
- Shimizu M, Hashiguchi M, Shiga T, Tamura HO, Mochizuki M. Meta-Analysis: Effects of Probiotic Supplementation on Lipid Profiles in Normal to Mildly Hypercholesterolemic Individuals. PLoS One. 2015;10(10):e0139795. Published 2015 Oct 16. doi:10.1371/journal.pone.0139795
- Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57-63. doi:10.1038/nature09922
- Zhu W, Wang Z, Tang WHW, Hazen SL. Gut Microbe-Generated Trimethylamine N-Oxide From Dietary Choline Is Prothrombotic in Subjects. Circulation. 2017;135(17):1671-1673. doi:10.1161/CIRCULATIONAHA.116.025338
- Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576-585. doi:10.1038/nm.3145
- Zeevi D, Korem T, Zmora N, et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell. 2015;163(5):1079-1094. doi:10.1016/j.cell.2015.11.001
- Kostic AD, Gevers D, Siljander H, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe. 2015;17(2):260-273. doi:10.1016/j.chom.2015.01.001
- O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32-48. doi:10.1016/j.bbr.2014.07.027
- Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis [published correction appears in Cell. 2015 Sep 24;163:258]. Cell. 2015;161(2):264-276. doi:10.1016/j.cell.2015.02.047
- Palmnäs MS, Cowan TE, Bomhof MR, et al. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS One. 2014;9(10):e109841. Published 2014 Oct 14. doi:10.1371/journal.pone.0109841
免责声明:本健康中心不提供诊断⋯